Density functional correlation theories based on the Unsöld approximation

<u>Zack M. Williams</u>,^a Timothy C. Wiles^a and Frederick R. Manby^a

^a Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom zack.williams@bristol.ac.uk

We present Unsöld-W12 (UW12) an approximate method for including explicit correlation in density functional theory [1, 2]. The approximation has a similar form to second-order Møller–Plesset (MP2) theory, without the dependence on virtual orbitals. Therefore, unlike double hybrid functionals, the approximation does not suffer from poor basis set convergence and is fully self-consistent.

We showcase two exchange—correlation functionals based on this approach; XCH-BLYP-UW12 and fB-LYP-osUW12, demonstrating their performance for small systems. These functionals, among other advantages contain an exceptionally small amount of self-interaction error; the cause of many problems in density functional theory.

We also consider possible new functional forms for the approximation.

References

1. A. Unsöld, Zeitschrift für Physik 43 (1927), 563.

2. T. C. Wiles and F. R. Manby, J. Chem. Theory Comput. 14 (2018), 4590.