
Insights into chemiluminescence from molecular dynamics simu-
lations and machine learning analysis

Morgane Vachera
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Chemiluminescence is the emission of light as a result of a non-adiabatic chemical reac-
tion [1,2]. One the simplest molecules with chemiluminescent properties is 1,2-dioxetane.
While the yield of the chemiluminescent process is observed to be low in 1,2-dioxetane
(0.3%), it increases to 35% by substituting the hydrogen atoms by methyl groups. The
reason for this impressive increase has remained an outstanding question. Firstly, we
address it using ground-state and non-adiabatic dynamics of the decomposition reaction
[3,4]. The simulations show that methyl-substitution leads to a significant increase in
the dissociation half-time. The molecular system stays longer in the so-called “entropic
trap” region where a manifold of states are degenerate, and more population is trans-
ferred into the excited state of the product before dark decomposition occurs. A simple
kinetic model is proposed (Figure 1A). While simulations are key to the understanding of
chemical reactions, a current challenge is the in-depth analysis of the large amount of data
produced, in order to provide valuable insight. Here, we present machine learning models
trained to predict directly a specific outcome quantity of ab initio molecular dynamics
simulations of chemiluminescent reactions (Figure 1B). Our results show that in order to
make accurate predictions, the models evidence empirical rules that are, today, parts of
the common chemical knowledge [5]. This paves the way for conceptual breakthroughs
where machine analysis would provide a source of inspiration to humans.
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Figure 1: (A) Molecular dynamics simulations of the decomposition of 1,2 dioxetane. (B)
Bayesian neural network trained to reproduce the molecular dynamics results.
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