A path-integral sampling (trajectory-free) approach to the calculation of quantum time correlation functions

Joseph R. Cendagortaa and Mark E. Tuckermana,b,c
aDepartment of Chemistry, New York University, New York, NY 10003
bCourant Institute of Mathematical Sciences, New York University, New York, NY 10012
cNYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062
mark.tuckerman@nyu.edu

One of the major outstanding challenges in computational chemistry is the calculation of thermal quantum time correlation functions in condensed phases. Of the methods most commonly employed, semi-classical approaches generally require the generation of a very large number of trajectories with a high associated computational overhead. Alternatively, the accuracy of popular centroid[1] and ring-polymer[2] MD algorithms often satisfactory for linear operators under the appropriate conditions but degrades for non-linear operators, and routes to systematic improvement of these methods are not obvious. In this talk, I will introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation[3]. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, a change of integration variables, often used in the derivation of trajectory-based semiclassical methods, is introduced. In particular, a transformation to sum and difference variables between forward and backward complex-time propagation paths. It can be shown that a formal integration over the path-difference variables yields a function of the path-sum variables that can be shown to be positive definite, thereby allowing the problem to be formulated as a sampling problem in the path-sum variables. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. This approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. As a practical approximation to the path-difference variable integrals, the potential is expanded in powers of these variables and the integral is performed analytically. The scheme is compared to the ring-polymer MD[2] and thermal-Gaussian LSC-IVR[4] approaches for a handful of example problems. Other formal considerations for rate theory and electronic excitation spectroscopy will also be discussed.

References