Is the Excited State Aromaticity a Driving Force for Planarization of Dibenzenannelated 8π-Electron heterocycles?

Josene Toldo, Ouissam El Bakouri, Miquel Solá, Per-Ola Norrby, and Henrik Ottosson

*a Uppsala University, b University of Girona, c AstraZeneca
joseene.toldo@kemi.uu.se; henrik.ottosson@kemi.uu.se

Excited state aromaticity (ESA), as given by Baird’s rule, can be a driving force for changes in excited state structures and other properties, such as observed for dibenzo[b,f]oxepin (Figure 1a).[1,2] Dibenzenannelated heterocycles with central 8π-electrons ring, found in a range of applications such as in antipsychotic drugs and photofunctional materials, often adopt a bent structure in the ground state (S₀) but can become planar in the first excited states (S₁ and T₁), fulfilling the requirements for excited state aromaticity.[3] Herein we report a quantum chemical investigation focused on how the position, type and number of heteroatoms in the central 8π-electron ring can affect the S₁ and T₁ states of a range of dibenzenannelated heterocycles (Figure 1b) and to extent aromaticity.[4] For molecules with one or two heteroatoms in the central ring, their optimal S₁ and T₁ structures are (nearly) planar and have ππ* character, being influenced by ESA to a significant degree. Moreover, the effect is much stronger for molecules containing nitrogen while it is weaker for oxygen-based compounds, following the established aromaticity trend of the electronic ground state. On the other hand, compounds with N=N bonds are strongly puckered in the excited state as consequence of their nonaromatic nπ* excited state.

Figure 1: a) Schematic representation of the potential energy surfaces for planarization of dibenzo[b,f]oxepin in the S₁ state. b) Molecules investigated in this work.

References