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In our work, we propose a path-integral method to study non-adiabatic reactions involving two
electronic states. Such a reaction cannot be studied using the Born-Oppenheimer approximation.
We have recently developed a new quantum transition-state theory to compute reaction rates
in multi-dimensional systems in the Fermi’s golden-rule regime [1]. Our golden-rule quantum
transition-state theory (GR-QTST) is exact in the classical limit for all systems. GR-QTST is
related to instanton theory [2], and hence gives excellent estimates of rates in both harmonic and
anharmonic model systems even in the deep tunneling regime. Our theory relies on constrained
path-integral sampling of dominant energy-conserving paths similar to an instanton. It is applicable
to treat chemical reactions in solution, in which the potential energy surfaces exhibit multiple
transition states. We show that a related theory known as Wolynes theory [3] can overestimate
the reaction rates by multiple orders of magnitude, even for simple one and two-dimensional model
systems with two transition states. The rates computed using GR-QTST show excellent agreement
with the exact calculations in these systems. Accordingly, our results show that GR-QTST offers
a simple approach to accurately calculate electron-transfer rates in complex multi-dimensional
molecular systems using a path-integral sampling.

FIG. 1: The plots show the rate constants computed for 8 dimensional system-bath model as a function
of bias, ε, using various methods. kMT(0) is the classical Marcus rate at ε = 0. 100 ring-polymer beads
were used to compute the GR-QTST rates at room temperature. Comparision to rates computed using
semi-classical (SC) instanton and exact Fermi’s golden-rule methods shows that GR-QTST is very accurate
in predicting the electron-transfer rates.
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