New Meta-GGA "Workhorses" in Transition Metal Chemistry and SAPT

Marcin Modrzejewski,a Michal Hapka,b Grzegorz Chalasinski,c and Malgorzata M. Szczesniakd

a Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, b Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA, c Faculty of Chemistry, University of Warsaw, Warsaw, Poland, d Department of Chemistry, Oakland University, Rochester, Michigan, USA

bryant@oakland.edu

The recently developed DFT meta-GGAs and their hybrids, such as SCAN, SCAN0, MVS, \(\omega\)B97M-V, and our own LC-PBETPSS-D3, promise improvement over the well-established GGAs and hybrid GGAs developed some 10-20 years ago. Are these promises fulfilled? Most of the tests thus far have involved main-group chemistry (and from the first two periods). This work examines performance of these new methods in transition-metal chemistry and catalysis. The results are rationalized in terms of fractional charge/fractional spin errors. The issue of suitability of these new meta-GGAs in symmetry-adapted perturbation theory is also explored.

References