Vibrational Spectroscopy of N₃⁻ in the Gas and Condensed Phase

Seyedeh Maryam Salehi, Debasish Koner, and Markus Meuwly*

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

E-mail: seyedehmaryam.salehi@unibas.ch

Abstract

Azido-derivatized amino acids are potentially useful, positionally resolved spectroscopic probes for studying the structural dynamics of proteins and macromolecules in solution. To this end a computational model for the vibrational modes of N_3^- based on accurate electronic structure calculations and a reproducing kernel Hilbert space representation^{1,2} of the potential energy surface for the internal degrees of freedom is developed. Fully dimensional quantum bound state calculations³ find the antisymmetric stretch vibration at 1974 cm^{-1} compared with 1986 cm^{-1} from experiment.^{4,5} This mode shifts by 64 cm^{-1} (from the frequency distribution) and 74 cm^{-1} (from the IR lineshape) to the blue, respectively, compared with 61 cm^{-1} from experiment for N_3^- in water.⁶ The decay time of the frequency fluctuation correlation function is 1.1 ps, in good agreement with experiment $(1.2 \text{ to } 1.3 \text{ ps})^{7,8}$ and the full width at half maximum of the asymmetric stretch in solution is 18.5 cm^{-1} compared with 25.2 cm^{-1} from experiment.⁶ A computationally more efficient analysis based on instantaneous normal modes is shown to provide comparable, albeit somewhat less quantitative results compared to solving the 3-dimensional Schrödinger equation for the fundamental vibrations. This model for N_3^- is then also used to characterize the dynamics around

hydrated azidohomoalanine, an experimentally relevant modification of alanine residues to investigate protein dynamics in solution.⁹

References

- (1) Ho, T.-S.; Rabitz, R. J. Chem. Phys. 1996, 104, 2584–2597.
- (2) Unke, O. T.; Meuwly, M. J. Chem. Inf. Model. 2017, 57, 1923–1931.
- (3) Tennyson, J.; Kostin, M. A.; Barletta, P.; Harris, G. J.; Polyansky, O. L.; Ramanlal, J.;
 Zobov, N. F. Comp. Phys. Comm. 2004, 163, 85–116.
- (4) Polak, M.; Gruebele, M.; Saykally,; Kaldor, R. J. Am. Chem. Soc. 1987, 109, 2884–2887.
- (5) Polak, M.; Gruebele, M.; Peng, G.; Saykally, R. J. Chem. Phys. 1988, 89, 110–114.
- (6) Maekawa, H.; Ohta, K.; Tominaga, K. Phys. Chem. Chem. Phys. 2004, 6, 4074–4077.
- (7) Maekawa, H.; Ohta, K.; Tominaga, K. Res. Chem. Intermed. 2005, 31, 703–716.
- (8) Hamm, P.; Lim, M.; Hochstrasser, R. Phys. Rev. Lett. 1998, 81, 5326–5329.
- (9) Stucki-Buchli, B.; Johnson, P. J. M.; Bozovic, O.; Zanobini, C.; Koziol, K. L.; Hamm, P.;
 Gulzar, A.; Wolf, S.; Buchenberg, S.; Stock, G. J. Phys. Chem. A 2017, 121, 9435–9445.