Efficient geometric integrators for nonadiabatic quantum dynamics. II. The diabatic representation

Julien Roulet, Seonghoon Choi, and Jiří Vaníček

Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
julien.roulet@epfl.ch

The first- and second-order split-operator algorithms are widely used integrators for solving the time-dependent Schrödinger equation. These two integrators preserve some important geometric properties of the exact evolution operator: both are unitary and symplectic while only the second-order split-operator algorithm is time-reversible [1]. Higher-order split-operator based integrators are not commonly used because they are thought to be inefficient due to the large number of Fourier transforms they require. The aim of this study [2] is to show that higher-order integrators based on the split-operator algorithm can be much more efficient (by orders of magnitude) if higher accuracy is desired.

For this, the first- and second-order split-operator algorithms were implemented. In addition, we also implemented several higher-order integrators by composing the second-order split-operator algorithm with different composition schemes [3-6]. To test the different integrators, we performed a convergence analysis by computing the photodissociation of NaI on a two-state one-dimensional [7]. The effect of dimensionality on the efficiency and accuracy of the integrators was also explored using a three-state three-dimensional model of pyrazine [8].

From the results, we observe that the higher-order integrators converge faster, in the time step, and are also more efficient than the first- and second-order integrators in both one- and multi-dimensional systems. We also confirm that, as long they are obtained using symmetric composition methods, the higher-order integrators preserve all the geometric properties of the second-order split-operator algorithm.

References