Differential Many-Body Cooperativity and Characterisation of Cu(I) TADF Complexes

Florian R. Rehaka, Jasmin M. Buschb, Stefan Bräseb, Wim Kloppera

aInstitute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe (Germany). E-mail: klopper@kit.edu

bInstitute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany).

The differential many-body expansion \cite{1} is applied to investigate non-additive and cooperative effects in UV/Vis spectra, singlet-triplet energy gaps and electronic energies of Cu(I) and Ag(I) halide TADF complexes. The dependence of these properties on different ligand systems is studied in terms of diphenylphosphinopyridine-type ligand system with and without halide containing arylphosphines \cite{2,3}, see Figure 1. Subsystems for the differential many-body expansion are obtained by substituting metals and halides. Properties of subsystems are described by first-order terms while second-order terms describe non-additive but pairwise contributions, and third-order - and higher-order - terms can be understood as indicator for cooperativity.

\begin{center}
\includegraphics[width=0.5\textwidth]{Figure1.png}
\end{center}

\textit{Figure 1: Schematic structure of the complexes studied.}

References

