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 Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, 
where the EFP2 is a polarizable force field based on ab initio electronic structure calculations 
were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-
pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently 
accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the 
excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, 
the results presented herein demonstrate that EFP2-MD is promising for predicting 
physicochemical properties of novel mixed solvents. 
 
 

 
 
Figure 1: Excess molar volume (DV) of a water-methanol mixture at ambient conditions (1 atm, 
300 K) simulated by EFP2/aug-cc-pVTZ-MD. For references, experimental and classical MD 
simulation results are also shown. 
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even it might be possible that the statistical sampling of the
previous data were not sampled enough much. In this regard, it
has been reported that the excess molar volume of water-
methanol mixtures can be described by applying a set of specifi-
cally selected mixed classical force fields (SPC/E and OPLS-AA for
water and methanol, respectively) [13,14]. However, the present
EFP2/aug-cc-pVTZ-MD simulations suggest that there is no need
to choose a complicated combination of classical force fields to
obtain mixed solvent properties. Fig. 1 demonstrates the superior
accuracy of the EFP2 potential for describing non-linear inter-
molecular interactions in binary mixed liquid systems. Since all
the electrostatic, exchange-repulsion, polarization, and dispersion
interactions are evaluated by a multipole expansion and localized
orbitals defined by quantum chemical wave functions for each sol-
vent fragment, EFP2-MD can describe the non-linearity of DV as a
function of molar fraction xm with ab initio accuracy and with less
computational cost than AIMD simulations. Notably, the prepara-
tion of very accurate EFP2 potentials expanded by large basis sets
(e.g. aug-cc-pVTZ) is straightforward on modern high performance
computers. In this way, it is very feasible to predict excess proper-
ties of mixed solvents with high accuracy using EFP2-MD
simulations.

4. Concluding remarks

In this paper, the applicability of EFP2-MD simulations to mixed
solvent systems was reported with a set of numerical examples for
various water-methanol binary liquid mixtures. Comparing the
accuracy of EFP2-MD simulations with effective fragment poten-
tials expanded by four different basis sets (cc-pVDZ, cc-pVTZ,
aug-cc-pVDZ, and aug-cc-pVTZ), it was shown that large basis sets
are important to obtain superior accuracy for describing inter-
molecular interactions in liquid mixtures. It has also been reported
that reproducing the experimental excess molar volumeDV, which
is a mixed solvent property, is very difficult by classical MD simu-
lations that employ pre-optimized force field parameters. Contrary
to classical MD simulations, ab initio EFP2-MD simulations are
promising from both an accuracy and computational point of view.
Since intermolecular interactions are evaluated using multipole
expansion and localized orbitals obtained by ab initio electronic
structure calculations for each solvent molecule, EFP2-MD simula-
tions can realistically describe non-linear intermolecular interac-
tions as the mixture molar fraction changes. Overall, this report

has shown that it is possible to predict mixed solvents’ properties
by EFP2-MD simulations.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.cplett.2018.01.042.
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Fig. 1. Excess molar volume (DV) of a water-methanol mixture at ambient
conditions (1 atm, 300 K) simulated by EFP2/aug-cc-pVTZ-MD. For references,
experimental and classical MD simulation results [12] are also shown.
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