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To describe reactions occurring at the solid/water interface is currently one of the major 
challenges in modeling in Heterogeneous Catalysis, especially in the context of biomass 
valorization.[1] It requires a proper depiction of the water solvent together with an adequate 
description of the surface state. Several approaches are available nowadays in the literature, 
from continuum models to a full explicit description of the liquid water.[2] When H-bonding 
between the liquid water and the reactant or intermediate is crucial, continuum models are not 
sufficient and an explicit inclusion of water molecule is a necessity. As a first step, micro-
solvation can be an effective approach that allowed us to interpret solvent effect in the 
conversion of levulinic acid into γ-valerolactone.[3] Moving to a full description of reactivity 
the water/metal interface is still beyond a full complete DFT approach provided the minimal 
size of the periodic cell that is necessary and the minimal sampling required. A combined 
QM/MM approach could be a promising strategy,[4] but necessitates a new generation of 
metal/water force field.[5] Nevertheless, being less demanding, inspecting transformations 
occurring at oxide/water interface is now reachable, as illustrated by our recent work on the 
stability of γ-alumina in water. After a fine characterization of the interfacial water[6], we 
located the weak spot on  γ-alumina by a combination of  experimental reactivity of shaped-
controlled crystals and metadynamics simulations and finally provided a rational for the 
greatest stability in presence of C5 and C6 polyols.[7] 
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