Potential Energy Surfaces and Nonadiabatic Dynamics in Photoactive Proteins from First Principles

Todd J. Martíneza,b

aDepartment of Chemistry and The PULSE Institute, Stanford University, Stanford, CA 94305, bSLAC National Accelerator Laboratory, Menlo Park, CA 94025
toddjmartinez@gmail.com

We discuss new efficient and accurate approaches for the computation of excitation energies and nonadiabatic dynamics in proteins, including both static and dynamic electron correlation. A graphical processing unit (GPU)-based implementation of the tensor hypercontracted XMS-CASPT2 method is described, enabling computations of excitation energies for hundreds of quantum mechanically-treated atoms (and further including thousands to tens of thousands of surrounding atoms treated by an empirical force field).1,2 We also describe our GPU-based implementation of the state-interaction/state-averaged restricted ensemble Kohn-Sham (SI-SA-REKS) method.3,4 We compare the performance and accuracy of this method to conventional XMS-CASPT2 and show that SI-SA-REKS can provide XMS-CASPT2 accuracy at a cost which is nearly that of ground state DFT. We apply the SI-SA-REKS method in combination with \textit{ab initio} multiple spawning to the nonadiabatic dynamics of channelrhodopsin-2,5,6 a protein which has seen wide use in optogenetics.

References