Parametrization and Evaluation of Transferable Minimal Pseudo-Potentials to Avoid Electrons Spilling-Out in Polarizable Embedded QM/MM Calculations

Alireza Marefat Khaha, Peter Reinholdtb, Jógvan Magnus Haugaard Olsenc, Jacob Kongstedb and Christof Hättiga

aQuantum Chemistry Group, Ruhr University of Bochum, Bochum, Germany
bDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
cDepartment of Chemistry, The Arctic University of Norway, Trømso, Norway
alireza.marefatkhah@rub.de

Recently, the polarizable embedded QM/MM PE-ADC(2) method has been implemented to calculate electronic excited state energies and molecular gradients in complex molecular environments \cite{1}. Comparing to full-QM ADC(2) much more costly calculations, the PE-ADC(2) can deliver reasonable accuracy for excitation and fluorescent emission energies, excluding the cases with significant electron density leakage to the MM subsystem. A remedy for electrons spilling-out issue is to supplement MM sites with pseudo-potentials that approximate the effect of Pauli repulsion. In this study, we have parametrized a set of effective core potentials ECPs, comprised of only one pseudo-potential function for each angular momentum that are representing all electrons of the isolated atoms based on some energetics criteria. These optimized pseudo-potentials are used in the PE(ECP)-ADC(2) calculations to compute the excitation energies for a test set with different type of excitations and various embedding environments. It will be shown that the PE(ECP)-ADC(2), compared to full-QM PNO-ADC(2), improves the accuracy particularly for the cases that diffuse basis sets are used.

References