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Polarizable QM/MM methods are a powerful strategy to model the effects of the environment 

on the  properties of molecules embedded in a matrix, such as a solvent or a biological 

system. From a computational point of view, embedding schemes require to compute the 

electrostatic interactions among the MM sites and between the MM and QM region. The 

former operation, if performed in a straightforward manner, scales with the square of the 

number of MM site and can easily become a formidable computational challenge for large 

systems such as biological macromolecules. The cost of an embedding scheme is further 

aggravated if distributed multipoles are used instead of point charges and, even more, if the 

embedding scheme includes mutual polarization. In the latter case, a linear system of 

equations has to be solved for each given QM density[1]. 

In order to extend the applicability of (polarizable) embedding schemes to large and very 

large systems, it is paramount to reduce the computational cost associated with the 

aforementioned operations. Mutatis mutandis, such operations can be always written as the 

computation of some electrostatic quantity, such as the electrostatic potential or its 

derivatives, or its contraction with the sources. The computation of  electrostatic quantities 

can be performed with a computational cost that scales linearly with the number of sources if 

a fast summation technique is used[2].  

In this contribution, I will present a completely general implementation of polarizable 

embedding schemes that achieves linear scaling in computational cost and memory 

requirements. The implementation relies on the Fast Multipole Method[3] (FMM) to compute 

the required electrostatic quantities and can handle sources, including polarizable ones, up to 

the quadrupole. Furthermore, the implementation can handle excluded or scaled interactions 

between MM sites, as well as damped Coulomb kernels for the polarization interactions. I will 

show some scaling and timings for the specific case of the AMOEBA force field[4], which 

treats the electrostatics in terms of distributed charges, dipoles and quadrupoles and 

polarization via induced dipoles. Nevertheless, the framework can be easily extended to any 

other polarizable scheme and can also be generalized to arbitrary order multipoles. 
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