Spin-Orbit Symmetry Breaking and Restoring in Kramers-Unrestricted Multireference Approaches

Xiaosong Li, Andrew J. Jenkins, Hongbin Liu, Hang Hu

Department of Chemistry, University of Washington, Seattle, WA, 98195 xsli@uw.edu

The accurate description of the electronic structure of transition metals, heavy-elements, and their compounds can be complicated by both the large number of close-lying states that often have multi-configurational nature in addition to significant relativistic effects. In order to address these challenges we present a Kramers-unrestricted relativistic twocomponent complete-active-space self-consistent field method (CASSCF) and a multireference configuration interaction (MRCI) that includes scalar relativistic effects and oneelectron spin-orbit coupling during the self-consistent wave function optimization procedure. These relativistic effects are included via an "exact two-component" transformation of the solution of the one-electron modified Dirac equation. This approach is variational in nature, allowing the orbitals to be affected by the spin-orbit coupling; a requirement for accurate description of atomic spin-orbit splittings. The ability to restore spin-orbit symmetry/degeneracy in Kramers-unrestricted multireference approaches will be discussed. The qualitative behavior of the methods is highlighted by an example of spin-orbit splitting – the sodium 'd-line'. The correct spin-orbit splitting structure is restored by optimizing the orbitals using state averaging or using a large active space. The methods are also tests with benchmark calculations of the ground and excited state spin-orbit splitting of lower p- and d-block elements, as well as some heavy-elements, compared to experiments. The formulation developed in this work is for the general Kramers-unrestricted case, and could be extended to include magnetic field effects in the future, where timereversal symmetry is no longer preserved.

References

1. A. Jenkins, H. Liu, J. Kasper, M. Frisch, X. Li, "Variational Relativistic Two-Component Complete Active Space Self-Consistent Field Method," *J. Chem. Theory Comput.* **15** (2019), 15, 2974.