Calculation of Molecular Properties Using Relativistic Real-Time TDDFT

Lukas Konecnya, Marius Kadeka, Mehboob Alamb, Kenneth Ruuda and Michal Repiskya

aHylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway bIIT Bhilai, Raipur, India

lukas.konecny@uit.no

The development and the scope of applications of relativistic real-time time-dependent density functional theory (RT-TDDFT) as implemented in quantum chemistry computer program ReSpect is presented.

The defining feature of RT-TDDFT is direct stepwise propagation of one-electron density matrix in time and on-the-fly evaluation of molecular properties. In contrast to the more widespread response theory approach, RT-TDDFT allows to access spectra in various regions, including near-resonant frequencies, from a single run, and does not require the evaluation of response kernels. The presented relativistic implementation is based on two Hamiltonians. First is the four-component Dirac–Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian type functions exploiting the noncollinear Kramers unrestricted formalism. Second is the two-component quasirelativistic X2C Hamiltonian, obtained from the original four-component Hamiltonian by a decoupling transformation formulated entirely in matrix algebra. The former represents the fully relativistic description while the latter achieves 7-fold acceleration practically without the loss of accuracy and is thus well suited for treatment of larger molecules.

The molecular properties calculated with relativistic RT-TDDFT include the electron absorption spectra from UV/Vis \[1\] to X-ray \[2\] regions, circular dichroism spectra \[3\] as well as molecular hyperpolarizabilities \[4\]. The considered systems range from smaller benchmark systems to lanthanide compounds and heavy metal complexes.

References