Relativistic four-component study of through-space spin–spin coupling constants

Michał Jaszuńskia, Stanislav Komorovskyb, Michał Repiskyc, Katarzyna Jakubowskad and Paweł Świdera

aInstitute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
bInstitute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
cHylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT – The Arctic University of Norway, Tromsø, Norway
dFaculty of Chemistry, University of Warsaw, Warszawa, Poland

michal.jaszunski@icho.edu.pl

Four-component approach at the density functional level of theory is used to study and visualize through-space NMR spin-spin coupling constants (SSCC). The values of SSCCs of the type Se-Se, Se-Te and Te-Te in three similar molecules determined in the relativistic and nonrelativistic approach are compared. We discuss the first-order current densities induced by the nuclear magnetic dipoles, and different possibilities to visualize the relativistic effects are considered.

MJ acknowledges support by National Science Centre (Poland) grant 2016/21/B/ST4/03904.

References