Definition of Electrode Potential from Density Functional + Implicit Solvation Theory

Jun Haruyama,^a Tamio Ikeshoji,^b and Minoru Otani^b

^{*a*} Institute for Solid State Physics, The University of Tokyo, ^{*b*} National Institute of Advanced Industrial Science and Technology haruyama@issp.u-tokyo.ac.jp

Electrode potential is a general concept, in electrochemistry, which governs the charge transfer reactions such as ion insertion/extraction and reduction-oxidation at electrode/solution interfaces; the electrode potential should be appropriately included in the computational model.¹ In this study, we consider how the standard hydrogen electrode (SHE) potential, which is the equilibrium potential of the charge transfer reaction of H^+/H_2 , is theoretically evaluated.

We employed density functional theory (DFT) calculations combined with the effective screening medium (ESM) technique² + the reference interaction site method (RISM);³ ESM-RISM formulation⁴ makes it possible to simulate the electrode (+ reactive ions) and the solution based on quantum mechanics and implicit classical solvation model, respectively. Changing the chemical potential of electron, μ_e , referenced to the inner potential Φ_s at the bulk solution region, we compared the grand potentials Ω for the following reaction:

 H_3O^+ (1M HCl aq.) + e^- (electrode M) $\leftrightarrow 1/2$ H_2 (gas) + H_2O (1M HCl aq.)

In the presentation, we will compare the potential profile of metal/solution/vacuum region obtained from ESM-RISM and the first-principles molecular dynamics calculation using ESM.⁵ We further discuss on the difference between μ_e @SHE and the absolute SHE obtained by Trasatti.⁶

References

1. J. Haruyama, T. Ikeshoji, and M. Otani, Phys. Rev. Mater. 2 (2018), 095801.

- 2. M. Otani, O. Sugino, Phys. Rev. B 73 (2006), 115407.
- 3. F. Hirata, P. J. Rossky, Chem. Phys. Lett. 83 (1981), 329.
- 4. S. Nishihara, M. Otani, Phys. Rev. B 96 (2017), 115429.

5. M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, T. Ikeshoji, J. Phys. Soc. Jpn. 77 (2008), 024802.

6. S. Trasatti, Pure Appl. Chem. 58 (1986), 955.