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The process of creating new chemistry and materials is increasingly driven by computational 

modeling and simulation, which allow us to characterize compounds of interest before pursuing 

them in the laboratory. However, traditional physics-based approaches (such as first-principles 

quantum chemistry) tend to be computationally demanding, in which case they may not be a 

practically viable option for large-scale screening studies that could efficiently explore the 

vastness of chemical space. 

In this presentation, we will show how we employ machine learning to develop data-derived 

prediction models that are alternatives to physics-based models, and how we utilize them in 

massive-scale hyperscreening studies at a fraction of the cost. Aside from conducting such data-

driven discovery, we also employ data mining techniques to develop an understanding of the 

hidden structure-property relationships that define the behavior of molecules, materials, and 

reactions. These insights form our foundation for the rational design and inverse engineering of 

novel compounds with tailored properties. 

We will highlight our work on physics-infused machine learning models that seek to improve 

the robustness and range of applicability of purely data-derived models; on adapting cutting-

edge data science techniques for chemical applications (e.g., transfer learning, active learning, 

and advanced network architectures for deep learning); and on meta-machine learning, i.e., to 

(machine) learn how to apply machine learning in the chemical domain. We will also show how 

we use data science techniques to advance, augment, and correct traditional molecular modeling 

and simulation methods. 
 

       
 

Figure. 2. (a) Network architecture that incorporates the non-linearity of the Lorentz-Lorenz 

equation; (b) ML model optimization within fixed features spaces for RI predictions via 

evolutionary learning; (c) Learning curves of traditional deep learning (DL) of static DFT 

polarizabilities vs DL plus transfer learning (DTL) vs DTL plus active learning (DTL+AL). 

The results demonstrate a dramatic reduction in the size of the required training set size. 
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