## Q-MP2-OS: A new approach to correlation using quadrature

G.M.J. Barca<sup>a</sup>, S.C. McKenzie<sup>b</sup>, N.J. Bloomfield<sup>b</sup>, A.T.B. Gilbert<sup>b</sup> and <u>P.M.W. Gill<sup>b</sup></u>

<sup>a</sup>Research School of Computer Science, Australian National University, Canberra, Australia, <sup>b</sup>Research School of Chemistry, Australian National University, Canberra, Australia peter.gill@anu.edu.au

As computational hardware becomes ever more massively parallel, quantum chemical methods and their underpinning implementations must evolve. In this lecture, I will present a novel algorithm [1] for the computation of the opposite-spin (OS) MP2 correlation energy, which is well suited to large-scale parallelization.

The method combines deterministic numerical quadratures and screening techniques, and entirely avoids the computation of any two-electron integrals. Speedup, scaling and accuracy results for a variety of molecules and reactions reveal that the new algorithm achieves 1 kcal/mol accuracy with almost perfect parallelizability (Fig. 1) and a computational cost which grows only quadratically with system size.



Figure 1: Speedup curve for Q-MP2-OS/6-31G\* on cyclosporine.

## References

1. GMJ Barca, SC McKenzie, NJ Bloomfield, ATB Gilbert and PMW Gill, submitted.