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De novo enzyme design has been a long-term dream for industrial applications, while still 
presents a challenge for computational methods. It requires a fundamental understanding of 
enzymatic catalysis and those evolutionary forces, which optimize catalytic rates [1]. We 
explored the links between conformational plasticity and enzyme evolvability using multiscale 
and coarse-grained approaches [2]. We simulated the laboratory evolution of two Kemp 
eliminase designs (KE07 and HG3.17) and have demonstrated that optimization of 
reorganization energy is a major driving force of catalytic improvements [1-3]. At the same 
time, we identified multiple catalytically relevant configurations, and showed that 
conformational heterogeneity persists throughout the evolutionary trajectories. In particular, we 
demonstrated that simultaneous presence of alternative rotamers in HG3.17 are required to 
reproduce the experimentally observed barriers. We further showed that catalytic rates are 
robust to significant changes in the conformational ensemble; which promotes reducing 
promiscuous activities. We relate conformational diversity to co-evolving dynamical couplings 
[4], and propose that these two phenomena jointly shape the functional repertoire of enzymes 
in the cellular environment [5].  
 
 

 
 

Figure 1: Residues with significant contributions to reorganization energy in the designed 
(HG.3) and evolved (HG.3.17) Kemp eliminase. Unfavorable contributions (l ³ 0.5 kcal/mol) 

are displayed in red, favorable contributions (l < -0.5 kcal/mol) are in blue.  
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