An efficient first principles method for molecular pump-probe NEXAFS spectra: Application to thymine and azobenzene

Christopher Ehlerta, Markus Gühr b and Peter Saalfrankc
aWilfrid Laurier University, Department of Chemistry and Biochemistry, Waterloo, Ontario, Canada
bInstitut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
cInstitut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
dchehlert@wlu.ca

Pump-probe near edge X-ray absorption fine structure (PP-NEXAFS) spectra of molecules offer insight into valence-excited states, even if optically dark. In PP-NEXAFS spectroscopy, the molecule is “pumped” by UV or visible light enforcing a valence excitation, followed by an X-ray “probe” exciting core electrons into (now) partially empty valence orbitals. Calculations of PP-NEXAFS have so far been done by costly, correlated wavefunction methods which are not easily applicable to medium-sized or large molecules. Here we propose an efficient, \textit{first principles} method based on density functional theory in combination with the transition potential and ΔSCF methodology (TP-DFT/ΔSCF), to compute molecular ground state and PP-NEXAFS spectra. We apply the method to \(n \rightarrow \pi^*\) pump / O-K-edge NEXAFS probe spectroscopy of thymine (for which both experimental and other theoretical data exist), and to \(n \rightarrow \pi^*\) or \(\pi \rightarrow \pi^*\) pump / N-K-edge NEXAFS probe spectroscopies of trans- and cis-azobenzene.

References