# Time-Dependent Linear Response for Coupled Electron-Boson Systems 

Thomas Dresselhaus ${ }^{a}$, Callum Bungey, Fidel A. Batista Romero and Frederick R. Manby ${ }^{b}$<br>University of Bristol, School of Chemistry<br>${ }^{a}$ t.dresselhaus@bristol.ac.uk, ${ }^{b}$ fred.manby@bristol.ac.uk

Time-dependent linear response theory ${ }^{1}$ is the most widely used approach for calculating excitation energies of electronic systems. In doing so, the Casida equation ${ }^{2}$ is solved. This formalism is not restricted to electronic systems, but can also be applied to systems coupled to other fermionic particles (e.g. protons ${ }^{3}$ ), or to bosonic (quasi-)particles, such as photons ${ }^{4}$, Drude oscillators, or nuclear vibrations:

$$
\left(\begin{array}{cccc}
\boldsymbol{A}^{\mathrm{I}} & \boldsymbol{A}^{\mathrm{I} \leftrightarrow \mathrm{II}} & \boldsymbol{B}^{\mathrm{I}} & \boldsymbol{B}^{\mathrm{I} \leftrightarrow \mathrm{II}}  \tag{1}\\
\left(\boldsymbol{A}^{\mathrm{I} \leftrightarrow \mathrm{II}}\right)^{\dagger} & \boldsymbol{A}^{\mathrm{II}} & \left(\boldsymbol{B}^{\mathrm{I} \leftrightarrow \mathrm{II}}\right)^{\dagger} & \boldsymbol{B}^{\mathrm{II}} \\
-\left(\boldsymbol{B}^{\mathrm{I}}\right)^{*} & -\left(\boldsymbol{B}^{\mathrm{I} \leftrightarrow \mathrm{II}}\right)^{*} & -\left(\boldsymbol{A}^{\mathrm{I}}\right)^{*} & -\left(\boldsymbol{A}^{\mathrm{I} \leftrightarrow \mathrm{II}}\right)^{*} \\
-\left(\boldsymbol{B}^{\mathrm{I} \leftrightarrow \mathrm{II}}\right)^{\mathrm{T}} & -\left(\boldsymbol{B}^{B}\right)^{*} & -\left(\boldsymbol{A}^{\mathrm{I} \leftrightarrow \mathrm{II}}\right)^{\mathrm{T}} & \left(-\boldsymbol{A}^{\mathrm{II}}\right)^{*}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{x}^{\mathrm{I}} \\
\boldsymbol{x}^{\mathrm{II}} \\
\boldsymbol{y}^{\mathrm{I}} \\
\boldsymbol{y}^{\mathrm{II}}
\end{array}\right)=\hbar \omega\left(\begin{array}{c}
\boldsymbol{x}^{\mathrm{I}} \\
\boldsymbol{x}^{\mathrm{II}} \\
\boldsymbol{y}^{\mathrm{I}} \\
\boldsymbol{y}^{\mathrm{II}}
\end{array}\right)
$$

Hereby, the matrices and vectors are defined in a basis of single-particle excitations. The $\boldsymbol{A}$ matrices and $\boldsymbol{x}$ vectors contain information about occupied-virtual excitations, while the $\boldsymbol{B}$ matrices and $\boldsymbol{y}$ vectors contain information about virtual-occupied excitations (i.e. deexcitations). The superscript denotes whether a submatrix/subvector contains contributions from subsystem I or II or whether it is an interaction term (I $\leftrightarrow \mathrm{II}$ ). An extension to additional subsystems is straightforward.
Starting from a mean-field treatment, the $A$ and $B$ matrices consist of the occupiedvirtual elements of the derivative of the Fock matrix w.r.t. the density matrix. With this methodology, e.g. environment effects can be accurately captured at a low computational cost.

On the poster, theoretical aspects, details of a general implementation and sample applications using the Hartree-Fock approximation for the electrons will be shown.

## References

[1] N. T. Maitra, J. Chem. Phys., 144 (2016), 220901.
[2] M. E. Casida, "Time-Dependent Density Functional Response Theory for Molecules" in Recent Advances in Density Functional Methods (Part I), (1995), 155-192.
[3] Y. Yang, T. Culpitt, S. Hammes-Schiffer, J. Phys. Chem. Lett., 9 (2018), 1765-1770.
[4] J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, A. Rubio, arXiv:1803.02519 [quant-ph] (2018).

