Quantum Chemistry Assisted by Machine Learning

Pavlo O. Dral

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1
45470 Mülheim an der Ruhr, Germany
dral@kofo.mpg.de

In my talk I will show how machine learning (ML) assists quantum chemical research in a variety of ways. First, machine learning can be used to improve the accuracy of low-level quantum chemical (QC) method either by explicitly correcting their predictions as in Δ-learning approach[1] or by improving the semiempirical QC Hamiltonian as in parameter learning technique.[2] Second, ML can be used for very accurate representation of potential energy surfaces, e.g. to drastically cut the number of high-level QC calculations required for predicting rovibrational spectra with spectroscopic accuracy[3] or to perform excited-state nonadiabatic dynamics simulations at very low computational cost[4-5]. For carrying out this research I develop MLatom[6-7] program package optimized for efficient and user-friendly use of kernel ridge regression-based ML in atomistic simulations.

References