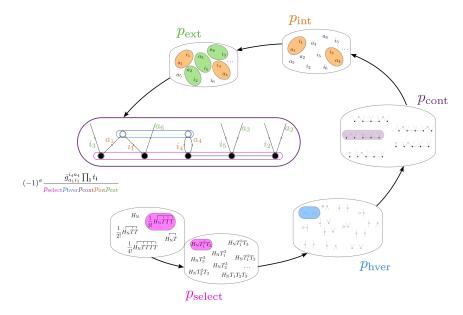
Diagrammatic Coupled Cluster Monte Carlo


Charles J. C. Scott^a, Roberto Di Remigio^{b,c}, T. Daniel Crawford^c, and, Alex J. W. Thom^a

^a University of Cambridge, ^bUiT – The Arctic University of Norway, ^cVirginia Tech roberto.d.remigio@uit.no

The coupled cluster model is arguably the most effective approximation for many-electron wavefunctions in weakly correlated systems. The model provides a systematically improvable hierarchy of approximations to the exact, full configuration interaction solution. Within a polynomial, rather than exponential, computational scaling, coupled cluster achieves size extensive and consistent results. This polynomial scaling remains however a challenge for its widespread application.

Monte Carlo sampling can circumvent the scaling wall, while remaining fully general with respect to truncation in the excitation hierarchy: an appealing feature when compared to other low-scaling, deterministic approaches.

We present the *diagrammatic coupled cluster Monte Carlo* (diagCCMC) algorithm that solves the linked equations of coupled cluster theory. We sample the connected expansion of the similarity-transformed Hamiltonian generating coupled cluster diagrams on the fly [1]. Results are thus rigorously size-extensive and consistent, even in the presence of stochastic noise. This affords a representation of noninteracting systems with a constant memory cost and reduced CPU cost. The algorithm can leverage locality without additional assumptions.

References

1. C. J. C. Scott, R. Di Remigio, T. D. Crawford, A. J. W. Thom, *J. Phys. Chem. Lett.* **10** (2019), 925.