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Geometric integrators [1] of the Schrödinger equation conserve exactly many invariants
of the exact solution. Among these integrators, the split-operator algorithm is explicit
and easy to implement but, unfortunately, is restricted to systems whose Hamiltonian is
separable into kinetic and potential terms. We present several implicit geometric integra-
tors applicable to both separable and nonseparable Hamiltonians and, in particular, to
the nonadiabatic molecular Hamiltonian in the adiabatic representation [2]. These inte-
grators combine the dynamic Fourier method with recursive symmetric composition [3,4]
of the trapezoidal rule or implicit midpoint method, which results in an arbitrary order
of accuracy in the time step. Moreover, these integrators are exactly unitary, symplectic,
symmetric, time-reversible, and stable and, in contrast to the split-operator algorithm,
conserve energy exactly, regardless of the accuracy of the solution. The order of conver-
gence and conservation of geometric properties are proven analytically and demonstrated
numerically on a two-surface NaI model in the adiabatic representation. Although each
step of the higher order integrators is more costly, these algorithms become the most effi-
cient ones if higher accuracy is desired; a thousand-fold speedup compared to the second-
order trapezoidal rule (the Crank-Nicolson method) was observed for a wavefunction con-
vergence error of 10−10. In a companion paper [5], we discuss analogous, arbitrary-order
compositions of the split-operator algorithm and apply both types of geometric integrators
to a higher-dimensional system in the diabatic representation.
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