Which quantum statistics–classical dynamics method is best for water?

Raz L. Bensona, George Treninsa and Stuart C. Althorpea

aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
rlb55@cam.ac.uk

There are a variety of methods for including nuclear quantum effects in dynamics simulations by combining quantum Boltzmann statistics with classical dynamics. Among them are thermostatted ring-polymer molecular dynamics (TRPMD) \cite{1}, centroid molecular dynamics (CMD) \cite{2}, quasi-centroid molecular dynamics (QCMD) \cite{3}, and the linearised semi-classical initial value representation (LSC-IVR) \cite{4}. Here we make a systematic comparison of these methods by calculating the infrared spectrum of water in the gas phase, and in the liquid and ice phases (using the q-TIP4P/F model potential \cite{5}). Some of these results are taken from previous work, some of them are new (including the LSC-IVR calculations for ice, and extensions of all the spectra into the near-infrared region dominated by overtone and combination bands). Our results suggest that QCMD is the best method for reproducing fundamental transitions in the spectrum, and that LSC-IVR gives the best overall description of the spectrum (albeit with large errors in the bend fundamental band caused by zero-point-energy leakage). The TRPMD method gives damped spectra that line up with the QCMD spectra, and is by far the cheapest method \cite{6}.

References