Dissociative electron attachment to SF₅CF₃ leading to a stable combination of anionic SF₄ and neutral CF₄: Ab initio molecular dynamics study

Hyoung Chul Ham and Kyoung Koo Baeck

Department of Chemistry, Gangneung-Wonju National University, 25457 Republic of Korea baeck@gwnu.ac.kr

Since the first claim of its potential global warming effect of SF₅CF₃, almost two decades ago,[1] numerous experimental and theoretical studies were carried out to provide deeper understanding about its fate in the earth's atmosphere, as reviewed in a book chapter.[2] Among all possible removal processes of SF₅CF₃ from atmospheric environment, its reaction with low-energy electrons in the mesosphere is regarded to be the most probable pathway. Several research groups have made related experimental and theoretical studies,[3-6] and confirmed the production of the anionic product (SF₅⁻) and radical (CF₃). So far, the fragment anion, SF₅, is assumed not recycled by its subsequent reaction with other chemical species. The energetic property of the product combination, neither the combination of anionic product (SF₅⁻) and radical (CF₃) nor their dipole bound complex anion, [5] however, is not stable enough to be considered as an ultimately stable stage of the dissociative electron attachment. According to our theoretical study, as shown in this work, [7] there exists an additional pathway leading to the more stable combination of anionic SF₄ and neutral CF₄ by the recombination of the initial fragments, the anionic product (SF₅⁻) and radical (CF₃), produced in the first stage of the electron attachment to SF₅CF₃. Ab initio calculations and subsequent classical molecular dynamics studies were carried out in the present work to support our new claim.

References

- W.T. Sturges, T.J. Wallington, M.D. Hurley, K.P. Shine, K. Sihra, A. Engel, D.E. Oram, S.A. Penkett, R. Mulvaney, C.A.M. Brenninkmeijer, *A potent greenhouse gas identified in the atmosphere: SF*₅*CF*₃, Science 289 (2000) 611–613.
- 2. R.P. Tuckett, *Trifluoromethyl sulphur pentafluoride*, *SF*₅*CF*₃: *atmospheric chemistry and its environmental importance via the greenhouse effect*, in Ch. 3 of *'Fluorine and the Environment: Atmospheric Chemistry, Emissions & Lithosphere,'* Volume 1, Ed. by A. Tressaud, Elsevier Sci. (2006).
- 3. R. Balog, M. Stano, P. Limao-Vieira, C. Ko[•] nig, I. Bald, N.J. Mason, E. Illenberger, *Low energy electron interaction with free and bound SF*₅*CF*₃*: negative ion formation from single molecules, clusters and nanofilms*, J. Chem. Phys. 119 (2003) 10396–10403.
- W. Sailer, H. Drexel, A. Pelc, V. Grill, N.J. Mason, E. Illenberger, J.D. Skalny, T. Mikoviny, P. Scheier, T.D. Ma["] rk, *Low energy electron attachment to SF*₅*CF*₃, Chem. Phys. Lett. 351 (2002) 71–78.
- T.M. Miller, S.T. Arnold, A.A. Viggiano, W.B. Knighton, *Electron attachment to SF₅CF₃* (296–563K), and calculations of the neutral and anion thermochemistry, J. Chem. Phys. 116 (2002) 6021–6027.
- 6. R.A. Kennedy, C.A. Mayhew, *A study of the low energy electron attachment to trifluoromethyl sulphur pentafluoride, SF*₅*CF*₃*: atmospheric implications,* Int. J. Mass Spectrom. 206 (2001) i–iv.
- 7. H. C. Ham and K. K. Baeck, submitted (2019).